多模态RAG | LocalGPT-Vision多模态检索系统理论&实战
原创 卖肠粉的小男孩 小窗幽记机器学习 2024年11月23日 23:55 北京
-
引言
-
简介
-
架构
-
实战
-
总结
0. 引言
随着人工智能技术的快速发展,多模态检索增强生成(RAG)系统正在彻底改变传统基于文本的RAG方式。本文深入探讨了LocalGPT Vision这一创新技术,它不仅能处理文本信息,还能理解和分析图像内容。通过结合计算机视觉与自然语言处理技术,LocalGPT Vision为用户提供了更直观、更全面的信息检索和处理能力,开创了AI应用的新范式。
1. 简介
长期以来,RAG系统主要依赖于从大型知识库中检索文本片段,并通过生成模型扩展响应。具体可以参考之前的RAG实战:RAG实战 | 基于LlamaIndex的文档问答系统。然而,这种方法在处理复杂文档,尤其是包含大量视觉信息的文档时,存在明显局限性。LocalGPT-Vision引入了视觉语言模型(Vision Language Models, VLM)的强大功能,克服了这一障碍,使得系统不仅能处理文本,还能对完整文档的视觉内容进行分析。
LocalGPT-Vision的核心技术结合了视觉文档检索和视觉语言模型(VLM) 的优势,用于回答用户提出的查询。该系统不仅依赖文本信息,还能分析文档中的图像、图表等视觉元素。通过使用诸如Google Gemini或GPT-4等先进模型,LocalGPT-Vision可以处理图像,生成嵌入向量,并检索最相关的内容,从而提供全面而精准的答案。
2. 架构
LocalGPT-Vision是一个端到端、基于视觉的检索增强生成(RAG)系统。通过支持文档(如PDF或图片)的上传,用户可以基于文档内容进行问答。系统采用Colqwen或ColPali模型执行检索,并将检索到的页面交由视觉语言模型(VLM)生成最终响应。目前支持的VLM包括:Qwen2-VL-7B-Instruct、LLAMA-3.2-11B-Vision、Pixtral-12B-2409、Molmo-7B-O-0924、Google Gemini、OpenAI GPT-4、LLAMA-3.2 with Ollama。
GitHub地址:https://github.com/PromtEngineer/localGPT-Vision
系统特点
-
端到端视觉化RAG:同时结合视觉文档检索和语言模型,提供全面答案。
-
文档上传与索引:支持上传PDF和图片文件,使用ColPali模