多模态RAG | LocalGPT-Vision多模态检索系统理论&实战

多模态RAG | LocalGPT-Vision多模态检索系统理论&实战

原创 卖肠粉的小男孩 小窗幽记机器学习 2024年11月23日 23:55 北京

  • 引言

  • 简介

  • 架构

  • 实战

  • 总结

0. 引言

随着人工智能技术的快速发展,多模态检索增强生成(RAG)系统正在彻底改变传统基于文本的RAG方式。本文深入探讨了LocalGPT Vision这一创新技术,它不仅能处理文本信息,还能理解和分析图像内容。通过结合计算机视觉与自然语言处理技术,LocalGPT Vision为用户提供了更直观、更全面的信息检索和处理能力,开创了AI应用的新范式。

1. 简介

长期以来,RAG系统主要依赖于从大型知识库中检索文本片段,并通过生成模型扩展响应。具体可以参考之前的RAG实战:RAG实战 | 基于LlamaIndex的文档问答系统。然而,这种方法在处理复杂文档,尤其是包含大量视觉信息的文档时,存在明显局限性。LocalGPT-Vision引入了视觉语言模型(Vision Language Models, VLM)的强大功能,克服了这一障碍,使得系统不仅能处理文本,还能对完整文档的视觉内容进行分析。

LocalGPT-Vision的核心技术结合了视觉文档检索视觉语言模型(VLM 的优势,用于回答用户提出的查询。该系统不仅依赖文本信息,还能分析文档中的图像、图表等视觉元素。通过使用诸如Google Gemini或GPT-4等先进模型,LocalGPT-Vision可以处理图像,生成嵌入向量,并检索最相关的内容,从而提供全面而精准的答案。

2. 架构

LocalGPT-Vision是一个端到端、基于视觉的检索增强生成(RAG)系统。通过支持文档(如PDF或图片)的上传,用户可以基于文档内容进行问答。系统采用Colqwen或ColPali模型执行检索,并将检索到的页面交由视觉语言模型(VLM)生成最终响应。目前支持的VLM包括:Qwen2-VL-7B-Instruct、LLAMA-3.2-11B-Vision、Pixtral-12B-2409、Molmo-7B-O-0924、Google Gemini、OpenAI GPT-4、LLAMA-3.2 with Ollama。

GitHub地址:https://github.com/PromtEngineer/localGPT-Vision

图片

系统特点

  1. 端到端视觉化RAG:同时结合视觉文档检索和语言模型,提供全面答案。

  2. 文档上传与索引:支持上传PDF和图片文件,使用ColPali模

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

强化学习曾小健

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值