万字长文!从AI Agent到Agent工作流,一文详细了解代理工作流(Agentic Workflows)
原创 ShuYini AINLPer 2025年03月24日 22:39 上海
引言
AI Agent、Agentic AI、Agent架构和Agent工作流等概念如今备受关注,但它们究竟是什么?它们能做什么?新技术常常伴随着混乱的术语和炒作。本文将深入解析代理型AI的关键概念——代理工作流(Agentic Workflows)。
AI代理本身并无太多实际用途,只有通过赋予其角色、目标和结构,只有通过工作流,才能真正发挥作用。理解代理工作流,有助于理解 AI 代理的运作方式和逻辑。为此,本文从AI Agent到Agent工作流,一文带你详细了解代理工作流(Agentic Workflows),具体内容安排如下:
-
什么是AI Agent?
-
什么是Agent工作流?
-
Agent工作流组成?
-
Agent工作流 vs Agent架构
-
Agent工作流模式
-
Agent工作流应用场景
-
Agent工作流优缺点
不了解AI Agent的小伙伴,可以读一下这篇文章:2025年的风口!| 万字长文,带你纵观大模型Agent,涉及研究痛点、应用场景、发展方向。
更多精彩内容-->专注大模型/AIGC、Agent、RAG等学术前沿分享!
什么是 AI Agent?
AI 代理是一种结合了大型语言模型(LLMs)的推理与决策能力,以及现实世界交互工具的系统,使其能够在有限的人类干预下完成复杂任务。代理被赋予特定的角色,并拥有不同程度的自主性来实现最终目标。它们还具备记忆能力,能够从过去的经验中学习,并随着时间的推移提升性能。
为了更好地理解AI代理在代理工作流中的作用,需要先了解它们的核心组成部分。
AI Agent的组成部分
尽管 AI Agent被设计用于半自主决策,但它们仍然依赖于一套更大的组件框架才能正常运行。这些组件包括:
-
LLMs(大型语言模型):使代理具备推理能力
-
工具(Tools):帮助代理完成任务
-
记忆(Memory):让代理能够从过去的经验中学习,并随着时间优化响应
推理(Reasoning)
AI 代理的强大之处在于其迭代推理能力,即在整个问题解决过程中持续“思考”。推理能力主要来自底层 LLM,并发挥两个核心作用:规划(Planning)和反思(Reflecting)。
-
规划(Planning):代理会分解任务(Task Decomposition),将复杂的问题拆解为更小、更可执行的步骤。这样可以让代理系统地执行任务,并根据不同需求选择不同的工具。此外,代理还能进行查询分解(Query Decomposition),即将复杂查询拆解成更简单的子查询,以提高 LLM 响应的准确性和可靠性。
-
反思(Reflecting):代理会回顾自身的行动结果,并基于结果与外部数据进行调整,以优化后续决策。
工具(Tools)
由于 LLM 仅限于其训练时获得的知识(静态的参数化知识),为了扩展其能力,AI 代理可以借助外部工具,如:
工具类型 |
作用 |
---|---|
互联网搜索 | 获取和总结实时信息 |
向量搜索 | 检索和总结外部数据 |
代码解释器 | 运行 AI 代理生成的代码 |
API | 访问外部服务、执行特定任务 |
当 LLM 选择合适的工具来完成任务时,它会执行函数调用(Function Calling),从而扩展自身能力,超越单纯的文本生成,实现对现实世界的交互。
工具的选择可以由用户预先定义,也可以由代理动态决定。动态选择工具有助于解决复杂任务,但对于简单工作流,预定义工具可能更高效。
记忆(Memory)
AI 代理的记忆能力是代理工作流区