DrugAI资料汇总
CADD学习汇总
分子式基础
数据
文件格式
数据集
其他
生物医药常用依赖框架Python API教程
ChemDraw
蛋白建模
可视化
PyMol教程
- 安装
- 基础
- 动画制作
- surface/cartoon透明度的调节(静电势能)
- 构建肽链+优化构型
- 蛋白结合口袋结构比较(pocket alignment)
- 用蛋白NMR结构简单模拟蛋白分子动力学
- 蛋白位点突变
- 蛋白保守序列染色
- Caver插件 研究蛋白通道
- 用于计算LeDock, AutoDock和AutoDock Vina的对接盒子插件
- Pymol 移动配体操作
- 移动对象模拟分子对接
- 分子动力学(MD)模拟轨迹动画
- PyMol相关脚本
- CADD课程学习(3)-- 靶点药物相互作用(PyMol)(不对外开放)
VMD
高通量虚拟筛选
传统对接
AutoDock教程
- AutoDock, AutoDock-vina等对接工具安装
- CADD课程学习(7)-- 模拟靶点和小分子相互作用 (半柔性对接 AutoDock)(不对外开放)
- CADD课程学习(7)-- 模拟靶点和小分子相互作用 (柔性对接 AutoDock)(不对外开放)
- LeDock 基于结构的虚拟筛选
- Smina 基于结构的虚拟筛选
- gnina
PyRx
MOE教程
Schrodinger教程
- schrodinger 薛定谔安装
- 薛定谔软件教程–基本使用(1)
- 薛定谔软件教程–蛋白准备(2)
- 薛定谔软件教程–配体准备(3)
- 薛定谔软件教程–生成对接盒子(4)
- 薛定谔软件教程–Glid对接(5)
- 诱导契合对接(Induced Fit Docking)
- 基于对接化合物库虚拟筛选(Virtual Screening)
- 分子共价对接(Covalent Docking)
- 基于药效团的药物设计(Pharmacophore Construction)
- 基于蛋白-配体复合物药效团药物设计(Pharmacophore)
- 基于构效关系模型药物设计(QSAR)
SYBYL教程
分子相互作用
PLIP
Open Babel教程
传统蛋白软件
ZDOCK教程
Rosetta教程
Rosetta: 了解Rosetta软件包构架(1)
Rosetta的程序的基本步骤(2)
Rosetta基础(3)–Rosetta能量函数简介
分子动力学模拟
GROMACS
- 安装Gromacs-2022 GPU-CUDA加速版 unbantu
- GROMACS在虚拟机上Linux系统的安装教程(适用于WSL2)
- 官方基础教程
- GROMACS 教程–水中的溶菌酶
- CADD课程学习(13)-- 研究蛋白小分子动态相互作用(GROMACS)(不对外开放)
- CADD课程学习(13)-- 研究蛋白小分子动态相互作用-III(蛋白配体复合物 GROMACS)(不对外开放)]
- 基于Gromacs配体修饰自由能FPE计算
- PyAutoFEP Tutorial–基于Gromacs
- 生成小分子力场TOP
Amber
Amber基础教程
- AMBER分子动力学模拟之TOP准备-- HIV蛋白酶-抑制剂复合物(1)
- AMBER分子动力学模拟之分子模拟-- HIV蛋白酶-抑制剂复合物(2)
- AMBER分子动力学模拟之结果分析(最低能量结果)-- HIV蛋白酶-抑制剂复合物(3)
- AMBER分子动力学模拟之结果分析(MMGB/PBSA)-- HIV蛋白酶-抑制剂复合物(4)
- AMBER分子动力学模拟之结果分析(突变型的能量计算,丙氨酸扫描)-- HIV蛋白酶-抑制剂复合物(5)
- AMBER分子动力学模拟之结果分析(构象分析)-- HIV蛋白酶-抑制剂复合物(6)
Amber其他教程
- 使用gaussian和antechamber拟合RESP电荷过程
- MMPBSA结合自由能计算原理
- gmx_MMPBSA教程–安装
- MMPBSA计算–基于李继存老师gmx_mmpbsa脚本
- gmx_MMPBSA教程–蛋白-配体结合自由计算(单轨运动法)
RDKit教程
入门
- 安装
- RdKit|分子读取
- Rdkit|分子输出
- Rdkit|分子可视化
- Rdkit|SMARTS语言应用
- Rdkit|最大公共子结构
- Rdkit|操作分子对象
- Rdkit|化学指纹(fingerprint)
- Rdkit| 相似性计算
- Rdkit|修改分子
- RdKit|分子3D构象生成与优化
- Rdkit|药效团(Pharmacophore)
- Rdkit|化学反应ReactionFromSmarts
- Rdkit|分子片段、R集团分解、片段指纹与指纹重要性分析
- Rdkit|分子部分构造的检索与可视化
- Rdkit|分子所具有的自由基电子数、价电子数
评价指标
分子
蛋白
算法建模
数据前处理
相关数据集
分子生成(MG)
2016年
2017年
- 2017 Oncotarget | The cornucopia of meaningful leads: Applying deep adversarial autoencoders for new molecule development in oncology
- 2017 Molecular Informatics | Application of generative autoencoder in de novo molecular design
2018年
- 2018 arXiv | Objective-Reinforced Generative Adversarial Networks (ORGAN) for Sequence Generation Mo
- 2018 Journal of cheminformatics | Molecular generative model based on conditional variational autoencoder for de novo molecular design
- 2018 arXiv preprint | MolGAN: An implicit generative model for small molecular graphs
- 2018 ACS | Generating Focused Molecule Libraries for Drug Discovery with Recurrent Neural Networks
- 2018 ACS | Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules
2019年
- 2019 NeurIPS | Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation
- 2019 ICLR | Learning Multimodal Graph-to-Graph Translation for Molecular Optimization
2020年
- 2020 Front. Pharmacol | Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation Models
- 2020 ACM | MoFlow: An Invertible Flow Model for Generating Molecular Graphs
- CLR 2020 | GraphAF: a Flow-based Autoregressive Model for Molecular Graph Generation
2021年
2022年
- 2022 | Sample Efficiency Matters: A Benchmark for Practical Molecular Optimization
- 2022 ICML | LIMO: Latent Inceptionism for Targeted Molecule Generation
- 2022 ICLR | CONTRASTIVE LEARNING OF IMAGE- AND STRUCTURE BASED REPRESENTATIONS IN DRUG DISCOVERY
- 2022 ICML | Pocket2Mol: Efficient Molecular Sampling Based on 3D Protein Pockets
2023年
3D
- Equivariant Diffusion for Molecule Generation in 3D
- GeoDiff: A Geometric Diffusion Model for Molecular Conformation Generation
- GeoMol: Torsional Geometric Generation of Molecular 3D Conformer Ensembles
分子优化(MO)
- 泛读-2020-Journal of Cheminformatics-AutoGrow4: An open-source genetic algorithm for de novo drug design and lead optimization
- 精读-2020-Journal of Cheminformatics-AutoGrow4: An open-source genetic algorithm for de novo drug design and lead optimization
分子属性预测(MPP)
分子对接
对接姿态
- 2022-ACS-Predicting Protein–Ligand Docking Structure with Graph Neural Network
- 2022-ICML-EquiBind: Geometric Deep Learning for Drug Binding Structure Prediction
- 2022-LCLR-diffdock: diffusion steps, twists, and turns for molecular docking
- tankbind
- e3bind
对接虚拟筛选
- 2021-ACS-IGN: A Novel and Efficient Deep Graph Representation Learning Framework for Accurate
- 2022-ACS-Boosting Protein−Ligand Binding Pose Prediction and Virtual Screening Based on Residue−Atom
QSAR
分子毒性预测(MTP)
蛋白质结构预测
- Alphafold 非docker 安装指南
- AlphaFold2源码解析(1)–安装使用
- AlphaFold2源码解析(2)–推理参数说明
- AlphaFold2源码解析(3)–数据预处理
- AlphaFold2源码解析(4)–整体模型架构
- AlphaFold2源码解析(5)–模型之特征构造
- AlphaFold2源码解析(6)–模型之特征表征
- AlphaFold2源码解析(7)–模型之Evoformer
- AlphaFold2源码解析(8)–模型之三维坐标构建
- AlphaFold2源码解析(9)–模型之损失
- AlphaFold2源码解析(10)–补充信息1
突变对蛋白结构影响
蛋白质结构评估
配体受体亲和力预测(CPI)
- 2018-Bioinformatics-DeepDTA: deep drug-target binding affinity prediction
- 2020 Bioinformatics | GraphDTA: predicting drug target binding affinity with graph neural networks
- 2020 Bioinformatics | TransformerCPI: Improving compound–protein interaction prediction by sequence-based deep learning with self-attention mechanism and label reversal experiments
- 2021 RSC | DGraphDTA:Drug–target affinity prediction using graph neural network and contact maps
- 2022 nature machine intelligence | GLAM: An adaptive graph learning method for automated molecular interactions and properties predictions