之前自己总结的计算受限平台上的SLAM,主要这么改,前端,改为直接法(甚至稀疏直接法)或者GPU加速,后端,改为滤波的形式。
ROVIO可能是目前唯一一个前端直接法,后端滤波的,但是我还没有跑过,有时间可以试一试。
SVO即使在低端计算平台上也能达到实时性,而在PC平台上则可以达到100多帧每秒的速度。在作者后续工作SVO 2.0中,速度更达到了惊人的400帧每秒。这使得SVO非常适用于计算平台受限的场合,例如无人机、手持AR/VR设备的定位。无人机也是弗斯特等人最初开发SVO的目标应用平台。
在FAST-LIO中,卡尔曼滤波被用于融合激光雷达和惯性测量单元的数据,实现高精度的位姿估计。
【【开源】DSOL:一种快速直接稀疏里程计方案,处理速度提高5倍!宾夕法尼亚大学-哔哩哔哩】 https://b23.tv/4jpl8ob
https://www.youtube.com/watch?v=yunBYUACUdg
他们提出了一些算法和实现增强,即使在资源受限的平台上,计算速度也会显著提高(平均提高5倍)。速度的提高使他们能够以更高的帧速率处理图像,从而在快速运动时提供更好的结果。
论文地址:https://arxiv.org/pdf/2203.08182.pdf
代码地址:https://github.com/versatran01/dsol
SchurVINS
https://mp.weixin.qq.com/s/1g0CLzouo5RxPgBMzBr98w
VINS主要包括两种方法:优化和滤波。基于优化的方法在定位的高精度方面很显著,但可能会受到高计算复杂性的影响。相反,基于滤波的方法实现了高效率,但牺牲了精度。因此,迫切需要开发一个结合了高精度和高效率的框架。受到基于优化的方法中的舒尔补的启发,作者充分利用了用于姿态和地标构建的高维残差模型中固有的稀疏结构,以实现EKF的高效性。因此,这篇文章提出了一种既实现了高效率又实现了高精度的基于EKF的VINS框架。
FAST-LIVO
是融合的FAST-LIO和SVO2,论文说可以在ARM平台做到实时运行。
FAST-LIO是基于滤波的吧,SVO2是半直接法。
FAST-LIVO2
FAST-LIVO2可以在OrinNX和RK3588上实时运行。
从ORBSLAM3论文里的这张图可以看出,前端是直接法的后端基本是优化,后端是滤波的前端基本是特征点法。我感觉可能是直接法本身的特性决定的,直接法本身就是基于最小化广度误差求解位姿。SchurVINS 看着似乎既有直接法又有滤波,但是注意它基于的SVO2.0其实只能算半直接法,提取了特征点的,只是没有计算描述子。
https://blog.csdn.net/weixin_45947476/article/details/123595935

Edge-SLAM
边缘同步定位:边缘辅助视觉同步定位和建图
Edge-SLAM - Edge-Assisted Visual Simultaneous Localization And Mapping
用ORB-SLAM2作为一个原型视觉slam系统,并将其修改为edge和移动设备之间的分割架构。我们将跟踪计算保留在移动设备上,将剩余的计算,即局部映射和环路闭合,移动到边缘。
Jetson-SLAM
这个Jetson-SLAM我看了下代码,应该明显是基于ORBSLAM改的,但是似乎没有完全开源
https://mp.weixin.qq.com/s/cxoFXBnlj2k4FiMyJByw0g
https://mp.weixin.qq.com/s/TStBnrteGAGkMN4LKMtG5g
标题:High-Speed Stereo Visual SLAM for Low-Powered Computing Devices
作者:Ashish Kumar, Jaesik Park, Laxmidhar Behera
机构:Indian Institute of Technology (IIT)、Seoul National University (SNU)
原文链接:https://arxiv.org/abs/2410.04090
代码链接:https://github.com/ashishkumar822/Jetson-SLAM
我们提出了一个精确的和GPU加速的立体视觉SLAM设计,称为Jetson-SLAM。它在NVIDIA的低功耗10W Jetson-NX嵌入式计算机上显示出60FPS以上的帧处理速率,在桌面级200W GPUs上显示出200FPS以上的帧处理速率,即使在立体声配置和多尺度设置中也是如此。我们的贡献有三个方面:(1)一种有界校正技术,以防止在快速检测中将许多非角点标记为角点,提高SLAM准确性。(2)一种新的金字塔剔除和聚集(PyCA)技术,通过利用GPU设备,在高速抑制冗余特征的同时,产生鲁棒的特征。PyCA使用我们针对GPU的新的多位置每线程剔除策略(MLPT)和线程高效Warp-Allocation (TEWA)方案,使Jetson-SLAM在嵌入式设备上实现高精度和高速度。(3)Jetson-SLAM图书馆通过数据共享机制实现资源效率。我们在三个具有挑战性的数据集上的实验:KITTI、EuRoC和KAIST-VIO,以及两个高度精确的SLAM后端:Full-BA和ICE-BA表明,Jetson-SLAM是可用的最快的精确和GPU加速SLAM系统。