神经符号学习: 神经网络+逻辑推理
原创 算法进阶 算法进阶 2024-03-23 22:14 福建
算法进阶
关注我,领略AI前沿技术!专注Python人工智能、机器学习及深度学习算法分享!
117篇原创内容
公众号
1 前言
神经符号学习,目标是结合深度神经网络(DNNs)的感知能力和符号推理系统的推理能力。旨在结合神经感知与符号逻辑,但目前的研究仅将它们串联并分别优化,未能充分利用它们之间的相互增强信息。
本文提出了一种名为DeepLogic的深度学习框架,用于解决具有逻辑推理和神经感知双重任务的问题。本文贡献如下:
-
提出具有理论收敛保证的DeepLogic框架,该框架进行神经感知和逻辑推理的联合学习,使它们可以相互增强,以提高神经符号推理的性能和可解释性。
-
提出源自一阶逻辑的深度逻辑模块(DLM),能够从基本逻辑运算符构造和学习逻辑公式。
-
提出了深度逻辑优化(DLO)算法,通过理论上量化神经感知和逻辑推理之间的相互监督信号来保证神经感知和逻辑推理的联合学习。
2 DeepLogic框架
神经符号学习研究同时感知和推理的问题,其输入是语义数据,输出是未知的复杂关系。为避免任务分解,不应给出要学习的语义输入的符号属性。DeepLogic框架从数学角度描述了问题表述和建模,并提出了用于联合学习神经感知和符号推理的深度&逻辑优化(DLO)算法。
通过我们提出的DeepLogic框架,我们可以通过1位监督信号来共同学习感知能力和逻辑公式,指示语义输入是否满足给定的公式,如图1所示。前向传递(顶部)从语义输入x通过中间符号属性z到最终演绎标签y进行顺序处理。例如,推理一下1,2和3的关系。首先,系统通过神经感知模型将这些图像识别为符号:➊、➋和➌。然后,逻辑推理模型对➊、➋、➌之间的关系进行推理,得出满足逻辑公式:“➊加➋等于➌”的结论。在后向传递中(左下/右下),感知模型θ和符号系统φ的参数分别以另一个作为监督进行迭代优化。
图1 DeepLogic