KDD 2023论文All in One | 多任务提示在图神经网络中的应用

孙相国博士的论文提出了一种图神经网络的多任务提示方法,通过统一图任务格式,将下游问题重构为图级任务,并利用元学习优化提示,以增强模型的泛化能力和适应不同图任务。研究展示了在少样本和迁移学习场景下的优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

KDD 2023 | 多任务提示在图神经网络中的应用

IDEA Lab AIforBio 2024-03-11 21:43 北京

编译 | 赵云峰

审稿 | 康祥平

图片

  今天给大家分享的是香港中文大学的孙相国博士发表在the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD-2023)会议上的一篇论文“All in One: Multi-Task Prompting for Graph Neural Networks”。该论文提出了一种用于图神经网络的全能型多任务提示方法,通过在图领域引入提示学习的思想,填补了预训练模型与各种图任务之间的差距,实现了更好的模型泛化性能。同时,该论文获得了KDD2023研究方向的最佳论文奖

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

强化学习曾小健

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值