大模型中的RLHF

强化学习(Reinforcement Learning, RL)与人类反馈(Human Feedback, HF)相结合的技术,通常被称为人类反馈强化学习(Reinforcement Learning from Human Feedback, RLHF)。RLHF是一种用来训练大模型(如大型语言模型)的方法,结合了人类提供的反馈来优化模型的性能。以下是RLHF在大模型训练中的数学形式化详细说明:

1. 问题定义

在RLHF中,我们的目标是通过优化一个策略(policy),使得模型在给定任务下的表现最优。设定如下:

  • 状态空间 S:模型可能的所有状态
  • 动作空间 A:模型可能采取的所有动作。
  • 策略 π:从状态空间到动作空间的映射,表示模型在每个状态下采取动作的概率分布

2. 奖励机制

传统RL中,奖励函数R(s,a) 由环境确定。然而在RLHF中,奖励信号来自人类反馈。设:

  • 人类反馈 �H:人类对模型输出进行评价的集合。
  • 奖励模型 �HF(�,�,�)RHF​(s,a,H):基于人类反馈训练的奖励函数。

3. 优化目标

RLHF的目标是找到最优策略 �∗π∗,使得累积奖励期望值 �[�]E[R] 最大化。具体数学表达式为:

�∗=arg⁡max⁡���[∑�=0����HF(��,��,�)]π∗=argmaxπ​Eπ​[∑t=0T​γtRHF​(st​,at​,H)]

其中࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

强化学习曾小健

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值