近一年,多模态视觉&语言大模型架构演进汇总梳理

近一年,多模态视觉&语言大模型架构演进汇总梳理

CV开发者都爱看的 极市平台 2024年07月15日 22:00 广东

作者丨Dreamweaver

极市导读

本文回顾了多模态LLM (视觉-语言模型) 近一年来的模型架构演进,对其中有代表性的工作进行了精炼总结,截止2024.06。 

这篇综述一张图总结了多模态LLM的典型架构:

图片

BLIP

【2022.01发布】[1]

统一视觉-语言理解和生成,使用captioner+filter高效利用互联网有噪数据

图片

模型架构:

• Image/text encoder: ITC loss对齐视觉和语言表征,基于ALBEF提出的momentum distillation

• Image-grounded text encoder: ITM loss建模视觉-语言交互,区分positive/negative图文对,使用hard negative mining挖掘更高相似度的负例优化模型

• Image-grounded text decoder: LM loss实现基于图像的文本解码,将双向self-attention替换为causal self-attention

图片

BLIP的bootstrapping训练过程:

图片

BLIP-2

【2023.01发布】[2]

使用相对轻量的Q-Former连接视觉-语言模态

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

强化学习曾小健

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值