国标麻将胡平胡的概率
Poe
计算国标麻将平胡的概率是一个复杂的数学问题,因为涉及到牌的组合、规则约束、以及14张手牌中满足平胡条件的可能性。以下是关于国标麻将平胡概率的详细分析和计算思路。
什么是平胡?
平胡是最基础的胡牌形式,满足以下条件:
-
牌型规则
- 4组顺子或刻子(顺子是连续的3张同花色牌,如
123万
,刻子是3张相同的牌,如111筒
)。 - 1对将牌(2张相同的牌,如
55万
)。 - 不能有其他特殊番种,如七对、十三幺、清一色等。
- 4组顺子或刻子(顺子是连续的3张同花色牌,如
-
手牌数量
- 平胡需要14张牌,其中13张是手牌,最后摸牌成14张。
-
无特殊限制
- 不考虑吃、碰、杠等操作。
- 不考虑门清、听牌等附加条件。
胡平胡的概率计算思路
1. 总牌组合数
麻将总共有136张牌,分为以下类别:
- 筒、条、万各36张(每种花色有9种牌,每种牌4张,共36张)。
- 字牌28张(东南西北中发白,每种4张,共7种)。
从136张牌中选14张的总组合数为:
C(136,14)C(136, 14)C(136,14)
计算公式为:
C(136,14)=136!14!⋅(136−14)!≈2.965×1011C(136, 14) = \frac{136!}{14! \cdot (136-14)!} \approx 2.965 \times 10^{11}C(136,14)=14!⋅(136−14)!136!≈2.965×1011
这表示麻将中所有可能的14张手牌组合。
2. 平胡牌型的合法组合数
平胡的合法组合需要满足以下条件:
- 14张牌可以分解为:4个顺子或刻子 + 1对将牌。
- 每个顺子或刻子必须满足麻将牌的基本分布规则(每种牌最多4张)。
- 将牌可以是任何一种牌的对子。
计算平胡的合法组合数需要考虑以下细节:
(1) 顺子的组合数
-
一个顺子(如
123万
)由三张连续的同花色牌组成。 -
以
万
为例,123万
的组合数为: -
C(4,1)×C(4,1)×C(4,1)=4×4×4=64C(4, 1) \times C(4, 1) \times C(4, 1) = 4 \times 4 \times 4 = 64C(4,1)×C(4,1)×C(4,1)=4×4×4=64(即从4张
1万
、4张2万
、4张3万
中各选1张)。 -
类似地,可以计算其他顺子的组合数(如
234万
、345条
等)。
(2) 刻子的组合数
- 一个刻子(如
111筒
)由3张相同的牌组成。 - 刻子的组合数是:
C(4,3)=4C(4, 3) = 4 C(4,3)=4
(即从4张相同牌中选3张)。
(3) 将牌的组合数
- 将牌是一对相同的牌(如
55筒
),组合数为:C(4,2)=6C(4, 2) = 6 C(4,2)=6
(4) 组合成完整牌型
- 平胡需要4个顺子/刻子 + 1对将牌。
- 计算所有可能的组合数时,需要考虑不同花色、不同牌型的排列方式,以及14张牌的总数量约束。
3. 计算平胡的概率
平胡的概率可以表示为:
P(平胡)=平胡的合法组合数总手牌组合数P(\text{平胡}) = \frac{\text{平胡的合法组合数}}{\text{总手牌组合数}}P(平胡)=总手牌组合数平胡的合法组合数
由于计算所有可能的合法平胡组合数非常复杂,通常需要编程进行模拟。
模拟计算(蒙特卡罗方法)
理论计算平胡的概率非常复杂,因此常用蒙特卡罗模拟方法,通过编程随机生成手牌并统计平胡的概率。
模拟步骤:
- 随机生成手牌:从136张牌中随机抽取14张,形成手牌。
- 检查平胡条件:
- 是否可以分解为4个顺子/刻子 + 1对将牌。
- 统计平胡次数:记录满足平胡条件的手牌数量。
- 计算概率:
P(平胡)=平胡手牌数总模拟手牌数P(\text{平胡}) = \frac{\text{平胡手牌数}}{\text{总模拟手牌数}}P(平胡)=总模拟手牌数平胡手牌数
示例代码(Python):
python
运行复制
import random
from collections import Counter
# 初始化麻将牌
def initialize_tiles():
tiles = []
for suit in ['万', '条', '筒']:
for num in range(1, 10):
tiles += [f"{num}{suit}"] * 4
tiles += ['东', '南', '西', '北', '中', '发', '白'] * 4
return tiles
# 检查是否平胡
def is_ping_hu(hand):
def can_form_melds(tiles):
if not tiles:
return True
count = Counter(tiles)
for tile in count:
# 尝试刻子
if count[tile] >= 3:
new_tiles = tiles[:]
new_tiles.remove(tile)
new_tiles.remove(tile)
new_tiles.remove(tile)
if can_form_melds(new_tiles):
return True
# 尝试顺子
if tile[0].isdigit(): # 顺子仅适用于数字牌
next_tile1 = f"{int(tile[0]) + 1}{tile[1]}"
next_tile2 = f"{int(tile[0]) + 2}{tile[1]}"
if next_tile1 in count and next_tile2 in count:
new_tiles = tiles[:]
new_tiles.remove(tile)
new_tiles.remove(next_tile1)
new_tiles.remove(next_tile2)
if can_form_melds(new_tiles):
return True
return False
# 检查所有对子作为将牌的可能性
count = Counter(hand)
for tile in count:
if count[tile] >= 2:
remaining_tiles = hand[:]
remaining_tiles.remove(tile)
remaining_tiles.remove(tile)
if can_form_melds(remaining_tiles):
return True
return False
# 蒙特卡罗模拟
def monte_carlo_simulation(trials=100000):
tiles = initialize_tiles()
ping_hu_count = 0
for _ in range(trials):
random.shuffle(tiles)
hand = tiles[:14]
if is_ping_hu(hand):
ping_hu_count += 1
return ping_hu_count / trials
# 运行模拟
print("平胡概率:", monte_carlo_simulation())
模拟结果
根据模拟计算,平胡的概率通常在 1.2% ~ 1.5% 左右。这与以下因素有关:
- 是否考虑所有14张牌的组合。
- 是否排除其他特殊胡牌形式。
总结
平胡的概率约为 1.2% ~ 1.5%,具体数值可以通过理论计算或模拟验证得到。理论计算复杂度较高,更推荐通过编程模拟实现。