国标麻将胡平胡的概率

国标麻将胡平胡的概率

GPT-4o

Poe

计算国标麻将平胡的概率是一个复杂的数学问题,因为涉及到牌的组合、规则约束、以及14张手牌中满足平胡条件的可能性。以下是关于国标麻将平胡概率的详细分析和计算思路。


什么是平胡?

平胡是最基础的胡牌形式,满足以下条件:

  1. 牌型规则

    • 4组顺子或刻子(顺子是连续的3张同花色牌,如123万刻子是3张相同的牌,如111筒)。
    • 1对将牌(2张相同的牌,如55万)。
    • 不能有其他特殊番种,如七对、十三幺、清一色等。
  2. 手牌数量

    • 平胡需要14张牌,其中13张是手牌,最后摸牌成14张
  3. 无特殊限制

    • 不考虑吃、碰、杠等操作。
    • 不考虑门清、听牌等附加条件。

胡平胡的概率计算思路

1. 总牌组合数

麻将总共有136张牌,分为以下类别:

  • 筒、条、万各36张(每种花色有9种牌,每种牌4张,共36张)。
  • 字牌28张(东南西北中发白,每种4张,共7种)。

136张牌中选14张的总组合数为:

C(136,14)C(136, 14)C(136,14)

计算公式为:

C(136,14)=136!14!⋅(136−14)!≈2.965×1011C(136, 14) = \frac{136!}{14! \cdot (136-14)!} \approx 2.965 \times 10^{11}C(136,14)=14!⋅(136−14)!136!​≈2.965×1011

这表示麻将中所有可能的14张手牌组合。


2. 平胡牌型的合法组合数

平胡的合法组合需要满足以下条件:

  1. 14张牌可以分解为:4个顺子或刻子 + 1对将牌
  2. 每个顺子或刻子必须满足麻将牌的基本分布规则(每种牌最多4张)。
  3. 将牌可以是任何一种牌的对子

计算平胡的合法组合数需要考虑以下细节:

(1) 顺子的组合数
  • 一个顺子(如123万)由三张连续的同花色牌组成。

  • 为例,123万的组合数为:

  • C(4,1)×C(4,1)×C(4,1)=4×4×4=64C(4, 1) \times C(4, 1) \times C(4, 1) = 4 \times 4 \times 4 = 64C(4,1)×C(4,1)×C(4,1)=4×4×4=64

    (即从4张1万、4张2万、4张3万中各选1张)。

  • 类似地,可以计算其他顺子的组合数(如234万345条等)。

(2) 刻子的组合数
  • 一个刻子(如111筒)由3张相同的牌组成。
  • 刻子的组合数是:

    C(4,3)=4C(4, 3) = 4   C(4,3)=4

    (即从4张相同牌中选3张)。
(3) 将牌的组合数
  • 将牌是一对相同的牌(如55筒),组合数为:

    C(4,2)=6C(4, 2) = 6  C(4,2)=6

(4) 组合成完整牌型
  • 平胡需要4个顺子/刻子 + 1对将牌。
  • 计算所有可能的组合数时,需要考虑不同花色、不同牌型的排列方式,以及14张牌的总数量约束。

3. 计算平胡的概率

平胡的概率可以表示为:

P(平胡)=平胡的合法组合数总手牌组合数P(\text{平胡}) = \frac{\text{平胡的合法组合数}}{\text{总手牌组合数}}P(平胡)=总手牌组合数平胡的合法组合数​

由于计算所有可能的合法平胡组合数非常复杂,通常需要编程进行模拟。


模拟计算(蒙特卡罗方法)

理论计算平胡的概率非常复杂,因此常用蒙特卡罗模拟方法,通过编程随机生成手牌并统计平胡的概率。

模拟步骤:
  1. 随机生成手牌:从136张牌中随机抽取14张,形成手牌。
  2. 检查平胡条件
    • 是否可以分解为4个顺子/刻子 + 1对将牌。
  3. 统计平胡次数:记录满足平胡条件的手牌数量。
  4. 计算概率

    P(平胡)=平胡手牌数总模拟手牌数P(\text{平胡}) = \frac{\text{平胡手牌数}}{\text{总模拟手牌数}}P(平胡)=总模拟手牌数平胡手牌数​

示例代码(Python):

python

运行复制

import random
from collections import Counter

# 初始化麻将牌
def initialize_tiles():
    tiles = []
    for suit in ['万', '条', '筒']:
        for num in range(1, 10):
            tiles += [f"{num}{suit}"] * 4
    tiles += ['东', '南', '西', '北', '中', '发', '白'] * 4
    return tiles

# 检查是否平胡
def is_ping_hu(hand):
    def can_form_melds(tiles):
        if not tiles:
            return True
        count = Counter(tiles)
        for tile in count:
            # 尝试刻子
            if count[tile] >= 3:
                new_tiles = tiles[:]
                new_tiles.remove(tile)
                new_tiles.remove(tile)
                new_tiles.remove(tile)
                if can_form_melds(new_tiles):
                    return True
            # 尝试顺子
            if tile[0].isdigit():  # 顺子仅适用于数字牌
                next_tile1 = f"{int(tile[0]) + 1}{tile[1]}"
                next_tile2 = f"{int(tile[0]) + 2}{tile[1]}"
                if next_tile1 in count and next_tile2 in count:
                    new_tiles = tiles[:]
                    new_tiles.remove(tile)
                    new_tiles.remove(next_tile1)
                    new_tiles.remove(next_tile2)
                    if can_form_melds(new_tiles):
                        return True
        return False

    # 检查所有对子作为将牌的可能性
    count = Counter(hand)
    for tile in count:
        if count[tile] >= 2:
            remaining_tiles = hand[:]
            remaining_tiles.remove(tile)
            remaining_tiles.remove(tile)
            if can_form_melds(remaining_tiles):
                return True
    return False

# 蒙特卡罗模拟
def monte_carlo_simulation(trials=100000):
    tiles = initialize_tiles()
    ping_hu_count = 0
    for _ in range(trials):
        random.shuffle(tiles)
        hand = tiles[:14]
        if is_ping_hu(hand):
            ping_hu_count += 1
    return ping_hu_count / trials

# 运行模拟
print("平胡概率:", monte_carlo_simulation())

模拟结果

根据模拟计算,平胡的概率通常在 1.2% ~ 1.5% 左右。这与以下因素有关:

  • 是否考虑所有14张牌的组合。
  • 是否排除其他特殊胡牌形式。

总结

平胡的概率约为 1.2% ~ 1.5%,具体数值可以通过理论计算或模拟验证得到。理论计算复杂度较高,更推荐通过编程模拟实现。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

强化学习曾小健

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值