Qwen2-VL笔记

Qwen2-VL笔记

原创 韩松岭 AI-Study-Han 2024年09月27日 14:17 浙江

今天来分享一下最近大火的qwen2-vl模型,据说刷新各个榜单(感觉现在出个模型就是刷榜),看看有哪些特别的地方吧。

一、背景

目前的大型视觉语言模型(LVLM)的相关研究已经很多了,但是标准LVLM将输入图像编码为固定分辨率(例如224×224)进行处理,或者先缩放再填充的方法,但是这种方法会限制模型在不同尺度下捕捉信息的能力,导致高分辨率图像中细节信息的丢失。

目前的LVLM训练的时候通常会冻结类clip的视觉编码器,但是clip能否产生足够的视觉编码信息也值得怀疑,特别是在复杂推理任务和处理图像复杂细节方面。有研究尝试通过在LVLM训练中微调视觉编码器,并且已经取得了改善效果。为了进一步增强模型对不同分辨率的适应能力,我们在LVLM训练过程中引入了动态分辨率训练,在ViT中采用二维旋转位置嵌入(RoPE),使模型能够更好地捕捉不同空间尺度的信息。

视频本质上是一系列的图像帧,文本本质上是一维的,而现实环境则存在于三维空间中。当前模型中使用的一维位置嵌入显著限制了它们有效建模三维空间和时间动态的能力。所以我们开发了多模态旋转位置嵌入(MRoPE),采用独立组件表示时间和空间信息,提高模型理解和与世界互动的能力。

与LLM相比,LVLM在模型大小和数据量方面的scaling研究不足。

所以Qwen2-VL主要提升在:1、在各种分辨率和比例下的视觉理解效果最好;2、能够理解超过20分钟长度的视频;3、具备先进的推理和决策能力,可以与手机、机器人等硬件集成;4、支持多语言。

总的来说,Qwen2-VL的创新包括支持动态分辨率、ViT中采用二维旋转位置嵌入(RoPE)、设计了多模态旋转位置嵌入。

二、模型架构

图片

 

保留了Qwen-VL的模型框架,不同尺寸的模型中视觉编码器保持不变(6.7B的参数量,不理解既然研究scaling,

### 关于 Qwen2-VL 模型的使用说明 Qwen2-VL 是一种多模态视觉大模型,能够处理图像理解、文本生成以及两者的结合任务。以下是关于该模型的一些核心信息和技术细节: #### 1. 模型概述 Qwen2-VL 结合了先进的自然语言处理技术和计算机视觉能力,支持多种跨模态应用场景。通过训练大量图文数据集,它能够在给定图片的情况下生成描述性的文字或者根据一段文字生成对应的可视化内容[^3]。 #### 2. 部署方法 为了快速部署 Qwen2-VL-7B-Instruct 版本,可以通过以下命令完成文件移动操作: ```bash mv /root/.cache/modelscope/hub/Qwen/Qwen2-VL-7B-Instruct /root/Qwen ``` 这一步骤将下载好的模型文件从缓存目录迁移到指定路径以便后续加载和运行[^1]。 #### 3. 开源资源获取 如果希望进一步探索 Qwen2-VL 的具体实现方式及其配套工具链,则可以从 Hugging Face 平台访问官方仓库地址: [Hugging Face - Qwen2-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct/tree/main)[^2] 此链接提供了完整的代码库结构、预训练权重以及其他辅助脚本等内容供开发者研究与二次开发之用。 #### 4. 应用场景举例 利用 vLLM 和 Docker 容器化技术相结合的方式,可以轻松构建基于 Qwen2-VL 的定制服务端解决方案。例如,在电商领域中用于商品详情页自动生成;医疗健康方向上协助医生解读影像资料等等。 #### 5. 学习价值 随着 AI 行业持续进步,精通像 Qwen2-VL 这样领先的多模态框架对于个人职业生涯具有重要意义。无论是在科研还是工业界,熟悉此类前沿算法都将极大提升求职竞争力并开拓更多可能性空间。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

强化学习曾小健

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值