李飞飞空间智能新作ReKep详解-附代码解析

李飞飞空间智能新作ReKep详解-附代码解析

原创 木木JS 求知AI 2024年10月17日 17:35 广西

Rekep算法中从视觉识别到轨迹优化的全过程,包括从图像中提取关键点、生成任务约束、并最终优化机器人末端执行器的轨迹。以下是每个部分的详细解释:

图片

1.从RGB-D图像中识别关键点

### 6-DOF Robotic Arm MATLAB Simulation Using Forward Kinematics Analysis Method For simulating a six-degree-of-freedom (6-DOF) robotic arm in MATLAB, the forward kinematics approach is fundamental to determine the position and orientation of the end-effector given joint angles. The Denavit-Hartenberg (DH) parameters are commonly used for this purpose. The DH convention provides a systematic way to define coordinate frames on each link of the robot[^1]. Below is an example code snippet that demonstrates how one can set up such a simulation: ```matlab % Define DH Parameters for a hypothetical 6 DOF manipulator d = [0.333 0 0.316 0.0825 0.0825 0]; % Link offsets a = [0 0.0825 0 0 0.088 0]; % Link lengths alpha = deg2rad([90 0 -90 90 -90 0]); % Twist angles theta = deg2rad([0 0 0 0 0 0]); % Joint variables initialized at zero degrees % Create SerialLink object from Robotics Toolbox robot = SerialLink(larray(dhparam(a,d,alpha,theta)), 'name', 'SixR'); % Plot initial configuration figure; plot(robot); title('Initial Configuration'); hold on; % Animate through some random configurations q_random = rand(6, 1)*pi-pi/2; % Random joint values between -π/2 and π/2 radians traj = jtraj(zeros(6,1), q_random, 50); % Generate trajectory with 50 steps for i=1:size(traj.q, 2) plot(robot, traj.q(:,i)); pause(0.05); end ``` In addition to setting up the model as shown above, it's important to consider inverse kinematics when aiming for specific tasks or trajectories because while forward kinematics computes where the end effector will be based on known joint states, inverse kinematics solves what those joint states should be to reach desired positions[^2]. However, if focusing solely on simulations without real-world experiments, similar approaches have been taken but might lack validation against physical systems which could limit practical applications[^3]. When developing more advanced models incorporating machine learning techniques like ReKep’s method mentioned by Dr Yao, these methods may offer advantages over traditional ones especially regarding adaptability under varying conditions due to their data-driven nature[^4]. --related questions-- 1. How does the choice of different sets of DH parameters affect the accuracy of forward kinematic calculations? 2. What challenges arise during the transition from simulated environments into actual hardware implementations concerning 6-DOF arms? 3. Can you explain the difference between using symbolic computation versus numerical approximation within MATLAB for solving forward kinematics problems? 4. Are there any particular considerations needed when applying deep learning algorithms specifically designed for motion retargeting onto robots equipped with closed-loop kinematics?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

强化学习曾小健

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值