什么是“人在环中”?
什么是“人在环中”?
Background
Science
近年来,人工智能(AI)火热指数愈来愈高,在学习应用过程中,大家可能会遇到一个术语——人在环中(Human-in-the-loop, HITL),实质是一种人与机器的交互方式,即将个人的判断决策融入AI系统流程中去,构成流程的运行闭环。其实,按照人机协同方式不同分为“人在环中”“人在环上”“人在环外”三种:人在环中,智能系统的动作完全由人来决策和控制;人在环上,智能系统按照指令自主决策和实施行动,人按需随时介入接管;人在环外,智能系统被指定了行动限制和目标,自主决策和实施行动。
Introdunction
Science
当前AI系统发展仍以HITL策略为主,这里我们着重讨论“人在环中”。该策略通过在 AI 系统的开发与运行的各个阶段融入人类的直观判断和反馈,发挥人类智能与机器自动化各自的优势,以此提升 AI 系统的性能、准确度和可靠性。核心思想是通过建立一个持续双向的反馈循环,让人类与AI模型进行互动,从而在数据标注、模型训练、质量控制和决策制定等关键环节中,优化 AI 的学习过程和输出结果,包括提高数据标注准确性、提高模型训练效率、提升决策制定可靠性等。
Introdunction
Science
随着 HITL策略的发展,其优势逐渐显现。第一,通过人的反馈不断优化AI 模型的参数和算法,可以显著提高系统预测的准确性和可靠性。第二,人类参与还有助于识别和减轻 AI 系统中可能存在的偏见,这些偏见可能源于训练数据的不平衡或选择性偏差,确保决策过程的公正性。第三,对电动汽车自动驾驶和医疗诊断等关键领域,人类的监督能够有效预防 AI 独立操作时出错,如在自动驾驶中及时纠正系统的误判,或在医疗诊断中提供关键的专业判断,从而增强系统安全性。
Introdunction
Science
在多个行业和应用场景中,HITL 的策略已被广泛应用,也衍生出了新的工作机会。例如在内容审核领域,人工审核员与 AI 合作,在 Facebook 等社交媒体平台上共同处理标记内容,提高了审核的效率和准确性;在医疗保健领域,AI 系统辅助医生分析患者的医疗影像数据,但最终诊断和治疗决策仍由医生做出,确保了医疗决策的准确性和人性化;在自动驾驶领域,人类驾驶员需随时接管 AI 控制的车辆,以应对当前自动驾驶技术尚未完全解决的复杂交通情况,确保行车安全。这些应用不仅展示了HITL 策略的广泛适用性,也体现了人类参对于确保 AI 系统准确性和安全性方面的必要性。
编辑|王子晔 袁也
审核|宋玲华