什么是“人在环中”?人类在环 Human in the Loop

什么是“人在环中”?

图片

什么是“人在环中”?

图片

图片

Background

Science

      近年来,人工智能(AI)火热指数愈来愈高,在学习应用过程中,大家可能会遇到一个术语——人在环中(Human-in-the-loop, HITL),实质是一种人与机器的交互方式,即将个人的判断决策融入AI系统流程中去,构成流程的运行闭环。其实,按照人机协同方式不同分为“人在环中”“人在环上”“人在环外”三种:人在环中,智能系统的动作完全由人来决策和控制;人在环上,智能系统按照指令自主决策和实施行动,人按需随时介入接管;人在环外,智能系统被指定了行动限制和目标,自主决策和实施行动。

图片

图片

Introdunction

Science

当前AI系统发展仍以HITL策略为主,这里我们着重讨论“人在环中”。该策略通过在 AI 系统的开发与运行的各个阶段融入人类的直观判断和反馈,发挥人类智能与机器自动化各自的优势,以此提升 AI 系统的性能、准确度和可靠性。核心思想是通过建立一个持续双向的反馈循环,让人类与AI模型进行互动,从而在数据标注、模型训练、质量控制和决策制定等关键环节中,优化 AI 的学习过程和输出结果,包括提高数据标注准确性、提高模型训练效率、提升决策制定可靠性等。

图片

Introdunction

Science

随着 HITL策略的发展,其优势逐渐显现。第一,通过人的反馈不断优化AI 模型的参数和算法,可以显著提高系统预测的准确性和可靠性。第二,人类参与还有助于识别和减轻 AI 系统中可能存在的偏见,这些偏见可能源于训练数据的不平衡或选择性偏差,确保决策过程的公正性。第三,对电动汽车自动驾驶和医疗诊断等关键领域,人类的监督能够有效预防 AI 独立操作时出错,如在自动驾驶中及时纠正系统的误判,或在医疗诊断中提供关键的专业判断,从而增强系统安全性。

图片

Introdunction

Science

在多个行业和应用场景中,HITL 的策略已被广泛应用,也衍生出了新的工作机会。例如在内容审核领域,人工审核员与 AI 合作,在 Facebook 等社交媒体平台上共同处理标记内容,提高了审核的效率和准确性;在医疗保健领域,AI 系统辅助医生分析患者的医疗影像数据,但最终诊断和治疗决策仍由医生做出,确保了医疗决策的准确性和人性化;在自动驾驶领域,人类驾驶员需随时接管 AI 控制的车辆,以应对当前自动驾驶技术尚未完全解决的复杂交通情况,确保行车安全。这些应用不仅展示了HITL 策略的广泛适用性,也体现了人类参对于确保 AI 系统准确性和安全性方面的必要性。

编辑|王子晔  袁也

审核|宋玲华

Human-in-the-Loop Machine Learning lays out methods for humans and machines to work together effectively. Summary Most machine learning systems that are deployed in the world today learn from human feedback. However, most machine learning courses focus almost exclusively on the algorithms, not the human-computer interaction part of the systems. This can leave a big knowledge gap for data scientists working in real-world machine learning, where data scientists spend more time on data management than on building algorithms. Human-in-the-Loop Machine Learning is a practical guide to optimizing the entire machine learning process, including techniques for annotation, active learning, transfer learning, and using machine learning to optimize every step of the process. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Machine learning applications perform better with human feedback. Keeping the right people in the loop improves the accuracy of models, reduces errors in data, lowers costs, and helps you ship models faster. About the book Human-in-the-Loop Machine Learning lays out methods for humans and machines to work together effectively. You'll find best practices on selecting sample data for human feedback, quality control for human annotations, and designing annotation interfaces. You'll learn to create training data for labeling, object detection, and semantic segmentation, sequence labeling, and more. The book starts with the basics and progresses to advanced techniques like transfer learning and self-supervision within annotation workflows. What's inside Identifying the right training and evaluation data Finding and managing people to annotate data Selecting annotation quality control strategies Designing interfaces to improve accuracy and efficiency About the author Robert (Munro) Monarch is a data scientist and engineer who has built machine learning data for companies such as
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

强化学习曾小健

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值