KAG来了,RAG慌了!

KAG来了,RAG慌了!

原创 热爱AI的 NLP前沿 2024年10月31日 11:55 湖北

上个周,OpenSPG 开源了KAG 框架,通过利用知识图谱和向量检索的优势,在四个方面双向增强LLM和知识图谱,以解决 RAG 存在的挑战(RAG 存在着向量相似度与知识推理相关性差距大、对知识逻辑(如数值、时间关系、专家规则等)不敏感等问题,这些都阻碍了专业知识服务的落地。)。

整个框架包括kg-builder和kg-solver两部分

  • 图片

    kg-builder实现了对LLM友好的知识表示,支持无schema约束的信息提取和有schema约束的专业知识构建,并支持图结构与原始文本块之间的互索引表示

  • kg-solver采用逻辑形式引导的混合求解和推理引擎,包括规划、推理和检索三种类型的运算符,将自然语言问题转化为结合语言和符号的问题求解过程。

知识表示:

图片

KAG参考了DIKW(数据、信息、知识和智慧)的层次结构,将SPG升级为对LLM友好的版本,能够处理非结构化数据、结构化信息和业务专家经验。采用版面分析、知识抽取、属性标化、语义对齐等技术,将原始的业务数据&专家规则融合到统一的业务知识图谱中。

推理步骤:

图片

  1. 将自然语言问题转换成可执行的逻辑表达式,此处依赖的是项目下的概念建模,可参考黑产挖掘文档。

  2. 将转换的逻辑表达式提交到 OpenSPG reasoner 执行,得到用户的分类结果。

  3. 将用户的分类结果进行答案生成。

效果如何?

KAG在多跳问答任务中表现优异,相较于其他方法如NaiveRAG、HippoRAG等,在hotpotQA上的F1分数提高了19.6%,在2wiki上的F1分数提高了33.5%

图片

NLP前沿

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

强化学习曾小健

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值