从零预训练LLAMA3的完整指南:一个文件,探索Scaling Law

从零预训练LLAMA3的完整指南:一个文件,探索Scaling Law

作者:Mantavers,AGI独角兽
声明:本文只做分享,版权归原作者,来源 青稞AI
原文:https://zhuanlan.zhihu.com/p/706097271

引言

最近,Andrew大神发布了一个全新的视频教程,讲解了从零开始预训练GPT-2的全过程。这个四小时的视频详细介绍了模型的构建、训练数据的加载、评估方法以及在分布式框架下的DDP训练。受到此视频的启发,我决定使用LLaMA3架构,从零开始预训练一个大型语言模型,并对比不同模型参数下模型能力的提升。本文将开源所有相关代码在:

https://github.com/hengjiUSTC/learn-llm/tree/main/pretrain

接下来让我们进入正题。

模型构建和评估

为了能够有一个对照效果,同时保证我们之后自己从零实现的LLaMA模型的正确性,我们首先通过加载Huggingface的官方LLaMA3模型,对模型进行HellaSwag评估

代码开源在:

https://github.com/hengjiUSTC/learn-llm/blob/main/pretrain/play_with_llama.ipynb

模型加载

图片

hellaswag 评估

图片

我们可以看到,原始LLaMA3-8B模型的得分是70分。这一结果与官方公开的模型结果基本一致:

https://paperswithcode.com/sota/sentence-completion-on-hellaswag

图片

有了这一基准,我们就可以开始从零实现自己的LLaMA模型了。

图片

RMSNorm层

RMSNorm(Root Mean Square Normalization)是一种归一化方法,用于稳定和加速训练过程。

  • • 输入:

一个形状为(batch_size, sequence_length, hidden_dim)的张量,表示输入的隐藏状态。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

强化学习曾小健

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值