答案
YOLOv11引入了C3K2模块,这是其特征提取能力提升的关键所在。以下是对C3K2模块的详细解析及其原理。
C3K2模块概述
C3K2模块是YOLOv11中对CSPBottleneck结构的优化实现,旨在提升特征提取的效率和速度。其核心在于采用两个并行卷积层,这种设计使得数据处理更加高效,同时保持了较高的精度
。
C3K2的结构与原理
- 并行卷积:C3K2通过并行卷积层来处理输入特征图,这种方式能够有效地增加网络的宽度,从而提高特征提取能力。具体来说,C3K2的设计允许在每个卷积层中处理不同的特征通道,使得模型能够更好地捕捉多样化的信息 。
- 参数设置:C3K2模块中的一个重要参数是设置为2的C3k,这意味着在调用C3k时,使用了两个卷积层。这种设计不仅提高了网络的计算效率,还确保了在处理速度和精度之间取得良好的平衡 。
特征提取能力提升的原因
- 多通道特征融合:通过并行卷积,C3K2能够在不同通道上提取特征,从而增强了模型对复杂