顶会论文看 图对比学习(GNN+CL)研究趋势
目录
收起
1 引言
2 图对比学习概述
3 启发式数据增强
3.1 图结构上
3.2 图特征上
4 对比层次
5 可学习数据增强
5.1 如何选择
5.2 如何实行
6 训练过程
6.1 挖掘层次关系
6.2 负例选择
7 特殊图
8 结语 及 相关资源
作者:侯宇蓬 @hyp1231,中国人民大学硕士二年级在读,导师为赵鑫教授,研究兴趣集中在图机器学习和推荐系统。
1 引言
随着对比学习(Contrastive Learning)在 CV、NLP 等领域大放异彩,其研究热度近年来也逐步走高。在图学习领域,由于图(Graph)数据也存在缺少标签或难