图对比学习(GNN+CL)顶会论文看 研究趋势

顶会论文看 图对比学习(GNN+CL)研究趋势

AI Box专栏

目录

收起

1 引言

2 图对比学习概述

3 启发式数据增强

3.1 图结构上

3.2 图特征上

4 对比层次

5 可学习数据增强

5.1 如何选择

5.2 如何实行

6 训练过程

6.1 挖掘层次关系

6.2 负例选择

7 特殊图

8 结语 及 相关资源

作者:侯宇蓬 @hyp1231,中国人民大学硕士二年级在读,导师为赵鑫教授,研究兴趣集中在图机器学习和推荐系统。

1 引言

随着对比学习(Contrastive Learning)在 CV、NLP 等领域大放异彩,其研究热度近年来也逐步走高。在图学习领域,由于图(Graph)数据也存在缺少标签或难

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

强化学习曾小健

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值